PRESSURE DROP DATA BASKET STRAINERS

THREADED BASKET STRAINER PRESSURE DROP – LIQUIDS (Sizes 1/2" to 2")

FLANGED BASKET STRAINER PRESSURE DROP – LIQUIDS (Sizes 2" to 24")

Notes: Pressure drop curves are based on water flow with standard screens See next page for correction factors to be used with other fluids and/or screen openings

PRESSURE DROP DATA **BASKET STRAINERS**

CHART 1

SCREEN CORRECTION FACTORS

FOR NON-STANDARD AND MESH LINED SCREENS

Multiply values obtained from Figure 1 and 2 by the appropriate values shown below

								•••••••••••••••••••••••••••••••••••••••
SIZE	SCREEN OPENINGS							
RANGE	Perforated Plate					Mesh Lined Standard Screens		
		% Scree	en Material Op	% Screen Material Open Area				
	60%	50%	40%	30%	20%	50%	40%	30%
1/4" to 1-1/2"	0.45	0.55	0.7	1	1.15	1.05	1.05	1.2
2" to 16"	0.65	0.8	1	1.4	2.15	1.05	1.05	1.2

Notes: See our Replacement Screen data sheet for % open area's of perforated plate Standard screens for sizes 1/4" to 1-1/2" is approximately a 30% open area screen media Standard screens for sizes 2" to 16" is approximately a 40% open area screen media

EXAMPLE:

Strainer Size: Filtration: Flow Rate: Service:

3"

a) Using FIGURE 1 the pressure drop is determined to be 0.4 psid using the standard screen 100 mesh lined 1/8" perf. b) Looking at the replacement screen data sheet, we find that the % open area of 100 mesh is 30% 100 gpm c) Using CHART 1 we read the correction factor to be 1.2 for 100 mesh lined screen Water d) Total pressure drop equals 0.4 x 1.2 = 0.48 psid clean.

VISCOSITY AND DENSITY CORRECTION FACTOR CHART

For use see instructions below:

	CHART 2						CHART 3
SIZE	COMPONENT	VISCOSITY	BODY LOSS	SCREEN LOSS FACTOR			
RANGE	FACTOR	Ср	FACTOR	Perf Alone	20 mesh lined	30, 40 mesh	60 to 300 mesh
	(CF)		(BF)	(PF)	(MF)	lined (MF)	lined (MF)
1/4" to 1-1/2"	0.25	10	1	1.15	1.3	1.4	1.5
2" to 16"	0.35	25	1.2	1.25	2	2.2	2.5
		100	1.6	1.4	3	4	6.5
		200	2.2	1.5	4.5	7	11.5
		500	4.4	1.6	10	15	25
		1000	8	1.7	15	30	50
		2000	15.2	1.9	30	60	100

HOW TO USE:

Step 1 Using FIGURE 1 or 2 determine the pressure drop through the strainer with water flow and standard screens = (P1)

If non-standard screens (i.e. 40 mesh, 60 mesh, etc..) are being used, apply factors in CHART 1 to determine corrected pressure drop = (P2) Step 2

- Multiply P1 or P2 by the specific gravity of the fluid flowing through the strainer = (P1 or P2 x specific gravity = P3) Step 3
- Using CHART 2 mutiply P3 by the appropriate Component Factor (CF) = (P3 x CF = P4) Step 4

Step 5 (P3 - P4 = P5)

Multiply P4 by the appropriate Body Loss Factor (BF) in CHART 3 to get P6 = (P4 x BF = P6) Step 6

Multiply P5 by the appropriate Screen Loss Factor (PF or MF) in CHART 3 to get P7 = (P5 x PF or MF = P7) Step 7

Step 8 P6 + P7 = Total Pressure Drop

EXAMPLE:

Strainer Size:	3"	a) As shown in the above example, the corrected pressure drop (P2) = 0.48 psid
Filtration:	100 mesh lined 1/32" perf.	b) Specific Gravity x P2 = P3 (1 x 0.48 = 0.48) P3 = 0.48
Flow Rate:	100 gpm	c) P3 x CF (from chart 2) = P4 (0.48 x 0.35 = 0.168) P4 = 0.168
Specific Gravity:	1	d) P3 – P4 = P5 (0.48 – 0.168 = 0.312) P5 = 0.312
Viscosity	100 cP	e) P4 x BF (from chart 3) = P6 (0.168 x 1.6 = 0.269) P6 = 0.269
		f) P5 x MF (from chart 3) = P7 (0.312 x 6.5 = 2.208) P7 = 2.208

g) P6 + P7 = Total Pressure Drop (0.269 + 2.208 = 2.477) Total Pressure Drop = 2.477 psid

